Configuration Spaces of Points on the Circle and Hyperbolic Dehn Fillings

نویسندگان

  • SADAYOSHI KOJIMA
  • YASUSHI YAMASHITA
  • Y. YAMASHITA
چکیده

A purely combinatorial compactification of the configuration space of n (≥ 5) distinct points with equal weights in the real projective line was introduced by M. Yoshida. We geometrize it so that it will be a real hyperbolic cone-manifold of finite volume with dimension n − 3. Then, we vary weights for points. The geometrization still makes sense and yields a deformation. The effectivity of deformations arisen in this manner will be locally described in the existing deformation theory of hyperbolic structures when n − 3 = 2, 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Configuration Spaces of Points on the Circle and Hyperbolic Dehn Fillings, Ii

In our previous paper, we discussed the hyperbolization of the configuration space of n (≥ 5) marked points with weights in the projective line up to projective transformations. A variation of the weights induces a deformation. It was shown that this correspondence of the set of the weights to the Teichmüller space when n = 5 and to the Dehn filling space when n = 6 is locally one-to-one near t...

متن کامل

A ug 1 99 7 NONHYPERBOLIC DEHN FILLINGS ON HYPERBOLIC 3 - MANIFOLDS Mario

In this paper we will give three infinite families of examples of nonhyperbolic Dehn fillings on hyperbolic manifolds. A manifold in the first family admits two Dehn fillings of distance two apart, one of which is toroidal and annular, and the other is reducible and ∂-reducible. A manifold in the second family has boundary consisting of two tori, and admits two reducible Dehn fillings. A manifo...

متن کامل

On Hyperbolic 3-manifolds Realizing the Maximal Distance between Toroidal Dehn Fillings

For a hyperbolic 3-manifold M with a torus boundary component, all but finitely many Dehn fillings on the torus component yield hyperbolic 3manifolds. In this paper, we will focus on the situation where M has two exceptional Dehn fillings, both of which yield toroidal manifolds. For such situation, Gordon gave an upper bound for the distance between two slopes of Dehn fillings. In particular, i...

متن کامل

Dehn filling of cusped hyperbolic 3-manifolds with geodesic boundary

We define for each g > 2 and k > 0 a set Mg,k of orientable hyperbolic 3manifolds with k toric cusps and a connected totally geodesic boundary of genus g. Manifolds in Mg,k have Matveev complexity g+k and Heegaard genus g+1, and their homology, volume, and Turaev-Viro invariants depend only on g and k. In addition, they do not contain closed essential surfaces. The cardinality of Mg,k for a fix...

متن کامل

Gromov Hyperbolic Spaces and Optimal Constants for Isoperimetric and Filling Radius Inequalities

A. In this article we exhibit the optimal (i.e. largest) constants for the quadratic isoperimetric and the linear filling radius inequality which ensure that a geodesic metric space X is Gromov hyperbolic. Our results show that the Euclidean plane is a borderline case for the isoperimetric inequality. Furthermore, by only requiring the existence of isoperimetric fillings in L∞(X) satisfy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998